
Towards Cycle-Accurate Emulation of Cortex-M Code
to Detect Timing Side Channels

Johannes Bauer
Department of Computer Science 1

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany
joe.bauer@fau.de

Felix Freiling
Department of Computer Science 1

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany
felix.freiling@fau.de

Abstract—Leakage of information through timing side
channels is a problem for all sorts of computing machinery,
but the impact of such channels is especially dramatic on
embedded systems. The reason for this is that these envi-
ronments allow attackers to exploit small timing differences
down to clock cycle accuracy. On the defensive side it is
therefore advisable to evaluate cautiously if security-critical
code contains data dependent timing discrepancies. When
working with real hardware, testing for such vulnerabili-
ties is a tedious process. In order to reduce the burden
of vetting, we study approaches that allow cycle-accurate
behavioral emulation of relevant CPU behavior such as
instruction pipeline flushes and bus contention. We show
that our approach is feasible and efficient by implementing
an emulator of the popular ARM Cortex-M core. Then
we give an overview about the problems of cycle-accurate
emulation and demonstrate our approach towards a cycle-
accurate ARM Thumb-2 simulator. Finally, we show how
this simulator can be integrated into the build process of
firmware to check for the presence of timing side channels
before the system is deployed.

Keywords-timing side channel; cycle accurate; emulation;
simulation

I. INTRODUCTION

Security issues in real world systems do not only arise
due to a flawed design, but also due to parasitic side effects
which any computing machine exhibits. Differences in the
power consumption, for example, lead to the presence
of so-called power emission side channels. When elec-
tromagnetic emission of the hardware changes with the
data used in a certain computation, we speak of EM side
channels. The most intuitive class, however, are timing
side channels. In these, some leakage is inadvertently
generated by the fact that computations on secret data
exhibit timing differences that depend on that data.

These timing side channels have been known since their
first introduction by Lampson [1]. In modern systems
they usually arise due to different optimizations within
hardware or software. The reason why they are so preva-
lent on desktop computers, for example, is that desktop
CPUs are using extraordinarily sophisticated techniques
in order to aggressively optimize system performance.
Such techniques include caching, instruction reordering
or branch prediction. Unfortunately, these techniques give
rise to data and code dependent timing behavior.

Traditionally, in embedded environments, these hard-
ware optimization techniques were neither necessary nor

were they particularly welcome: Since embedded sys-
tems and real-time computing often go hand in hand,
predictability is of utmost importance to developers. So-
phisticated mechanisms like branch prediction or caching
were not prevalent at all. In more recent microcontroller
architectures, however, these mechanisms slowly start to
appear. In particular the popular ARM Cortex-M archi-
tecture, which has picked up significant momentum in
recent years, shows features which previously only were
present on highly sophisticated PC CPUs. One reason for
their introduction is that internal MCU peripherals often
cannot keep up with the high core clock speeds of modern
microcontrollers. Without caching mechanisms, the slow-
est peripherals, such as flash ROM, would restrict the
overall performance of the system significantly. With the
introduction of these techniques, however, the same timing
side channels which were also seen in PC environments
before now also appear in microcontrollers.

One major difference, however, is the fact that in an
embedded environment, timing side channels leak more
information than in a PC environment: On a PC, an
attacker usually needs to rely on imprecise measurements
of time stamp counters and significant noise is present
due to effects of the operating system. Such limitations
are far less common in the embedded world. An attacker
with physical access to a device is usually able to control
the main clock source and has therefore the ability to
slow down time to his liking. With today’s mid-range
hobbyist equipment, it is therefore possible to perform
cycle-accurate timing measurements on such embedded
systems. In many cases, the firmware runs directly on the
bare metal, i.e. directly on the hardware with no operating
system layer in between. Even if an embedded operating
system is present, it will usually exhibit much more
predictable timing characteristics than operating systems
for the consumer market.

The motivation of such an attacker could be to gain
access to an otherwise unavailable administration interface
or extract information about the internal workings of such
an device. For example, if an attacker would control a
smart meter and extract the asymmetric private key, she
could forge meter values and send arbitrary data to the
utility company. Likewise, an attacker could find a master
password for a manageable switch using timing attacks;
although bad security practice, many vendors still ship

their devices with such back doors in the hope that the
protecting password remains secret.

A. Related Work

As with a lot of practical side channel work, Kocher [2]
also pioneered the field of timing side channel analysis.
He highlighted that timing differences in asymmetric cryp-
tographic operations could lead to disclosure of private
key data. Two years later, other implementations of his
proposals emerged and were published by Dhem et al. [3],
[4]. Around the same time, Kelsey et al. generalized
on these side channels and showed their presence in
popular algorithms such as IDEA, RC5 and DES [5].
Of particular interest to our work is the timing side
channel they described in IDEA, where they exploited
the timing difference present in a multiplication modulo
216+1. In their example, a multiply-by-zero operation took
significantly less time than a multiplication by a non-zero
value.

Such side channels are common for algebraic field
operations which are computed in software. At that time
it was widely believed that an effective defense against
this kind of timing attacks would be to use constant-
time lookup tables for field operations. Page [6], however,
showed how cache timing might cause these supposedly
constant-time lookups to exhibit exploitable timing differ-
ences. Indeed, Tsunoo et al. [7] demonstrated the effects
of leakage caused by caching effects to be relevant on
real-world systems. Exploiting timing differences, they
were able to break DES with a probability of over 90%
with an astonishingly low amount of 224 operations. Such
attacks were later shown [8] to also apply to the more
recent AES block cipher. A relatively well-known hack
on the MSP430 mask ROM boot loader was presented
by Goodspeed [9]: He exploited the timing differences of
different control flow paths to find out the correct boot
loader password of MSP430 devices.

Osvik et al. [10] proposed a general mitigation method
for these problems based on different approaches such
as normalization of cache timings, disabling of caches
altogether or hiding mechanisms to obfuscate the leakage.
Wang et al. [11] proposed hardware countermeasures,
namely a new type of cache architecture, that claimed to
solve side channel emission. However, Kong et al. [12]
highlighted serious issues with this proposal, confirming
yet again how difficult it really is to eliminate side
channels in cached architectures.

Cycle-accurate simulation is a topic that is not only of
interest for security research, but also for optimization
purposes. Yourst [13] presented such a cycle-accurate
simulator for the x86-64 architecture. Since the x86-64 is
much more complicated than the Cortex-M architecture,
their goal was to achieve 5% accuracy for all major simu-
lated parameters; since the sophisticated optimizations of
the x86-64 is not present in the Cortex-M architecture,
the relative timing determinism of the Cortex-M enables
much more accurate results in our case.

The Cortex-M uses internal SRAM for volatile stor-
age, which is another contributing factor to the relatively
straightforward implementation of an emulator. In contrast
to DRAM, SRAM exhibits deterministic timing character-
istics. To apply our results to DRAM, one could rely on
complex simulations of DRAM timings, such as in the
paper presented by Rosenfeld et al. [14]

If performance of the emulator is of interest – which
for us was only a secondary objective – the paper of Ye
et al. is also related. [15] They show which optimizations
are applicable to a simulator while preserving its emulation
accuracy. In their case they use it to improve the efficiency
of a power consumption simulator.

Our approach relies on behavioral simulation of the ar-
chitectural features. How processors can be modeled from
a hardware perspective, for example during simulation of
a synthesized FPGA, is covered by the work of Reshadi
et al. [16].

B. Contributions

We present a practical approach to detect timing side
channels in Cortex-M firmware. Our goal is to reliably
detect such channels at implementation time. To do this,
we built a behavioral Thumb-2 emulator with the specific
purpose to exactly model timing behavior of the Cortex-
M architecture down to clock cycle accuracy. We show
how this emulator can help identify possible timing side
channel leakage and how it can be incorporated into
automatic vetting checks. To summarize, we make the
following contributions:

• We describe our semi-automatic method of extract-
ing hardware-dependent information about run time
behavior from a real microcontroller and how to use
this knowledge to create a cycle-accurate Cortex-M
core emulator.

• We show how such an emulator can be integrated
into the vetting process to prevent timing side chan-
nel leakage for embedded systems in an automated
fashion.

C. Outline

This paper is structured as follows: Sect. II gives the
necessary background to understand aspects of modern
CPU design which are relevant for our topic. We then
proceed to discuss the factors which influence run time
behavior of our target platform in Sect. III and highlight
important aspects in the design of a cycle accurate emu-
lator. In particular we point out how real-world measure-
ments on physical hardware can quickly be turned into
a model for an emulator which we wrote. Our design is
then evaluated in Sect. IV against real-world cryptographic
algorithms and we show how integration of our work
flow into a semi-automatic vetting process can look like.
Afterwards, we discuss the results and give an outlook in
Sect. V.

II. BACKGROUND

In the following section, we give an overview about
relevant concepts of modern CPUs in Sect. II-A. Then we

Time

Load 1 Decode 1 Execute 1

Load 2 Decode 2 Execute 2
... ...O

pe
ra

tio
ns

Figure 1. Pipelined instruction execution

proceed to show details about the particular CPU family
(ARM Cortex-M) which we worked with in Sect. II-B.

A. Factors Influencing Execution Time in Modern CPUs

The internal construction of a modern CPU divides
instruction execution into three phases: the fetch, decode
and execution stages. At the first stage, one or more in-
structions are loaded from the position which the program
counter points to. This is done via a read on the bus which
fetches the data behind that address. In the next state,
the instruction is decoded. This means the CPU evaluates
which sub-components of the CPU need to be enabled to
perform the action which is requested by the opcode. After
this has been determined, the instruction is executed. In
the process of execution there might again be access to
a memory bus required, depending on the action that the
opcode is supposed to perform.

Loading of instructions and decoding or execution can
be parallelized. This is called pipelining and is shown in
Fig. 1. While the CPU executes the first instruction, it
can already – at the same clock cycle – concurrently fetch
the next instruction. If the CPU has prefetched instructions
and filled up the pipeline, but notices in the decoding stage
that the prefetched instruction is not the next in line to be
executed, the pipeline needs to be flushed and it needs to
be refilled with the correct instructions. This is the case,
for example, when a conditional jump takes control flow
away from the instructions which the CPU had already
prefetched.

There are also multiple factors which influence how
long the execution stage of instructions takes. First and
foremost is of course the actual computation that has been
requested by the opcode itself. Some complex instructions
need to be broken down by the CPU into smaller micro-
instructions which are computed sequentially. For exam-
ple, if there is a register indirect access with displacement,
the CPU has first to compute the effective address and
then execute the actual memory operation. The instruction
is therefore broken into two parts: address calculation is
performed on the arithmetic logic unit (ALU) after which
comes the store operation. Both parts may or may not
be pipelined, depending on the concrete architecture. The
typical example of a complex instruction which takes a
variable amount of clock cycles to execute is the integer
division operation.

Another factor which influences run time is the depen-
dency on a bus. Only one load or store can happen on a
bus at any point in time. Access to the bus therefore has to
be carefully coordinated. If multiple concurrent requests
require bus access, bus contention occurs and the CPU

must perform arbitration between the concurrent requests.
The bus peripherals might also have some inherent latency
associated with it. For example, typical external memory
or internal flash ROM cannot serve data as fast as the
internal CPU clock might require it for continuous opera-
tion. Therefore, the CPU has to wait some amount of time
after the address has been put onto the bus before the data
becomes valid. The time during which the CPU waits for
a reaction from the bus is often measured by the number
of successive wait states the CPU is in.

Lastly, caching is something that has major influence
on the real world run time of a system. A cache miss is
associated with the penalty to perform the actual read from
the bus while access to cached data is typically faster by
several orders of magnitude.

B. STM32 Cortex-M4 Specifics

The popular 32 bit Cortex-M architecture uses the ARM
Thumb-2 instruction set. This is an instruction set in which
opcodes are encoded either in a narrow 16-bit form or
in a wide 32-bit form. The CPU core of the M4 uses
an instruction pipeline which is 32 bits wide. Therefore,
depending on the width of the instructions at the location
of the program counter, either two narrow or one wide
instruction is prefetched into the instruction pipeline [17].
Most instructions of the Cortex-M take either one or two
clock cycles to execute, with the notable exception of
the division unit which, depending on the processed data,
takes anywhere in between 2 and 12 clock cycles for
execution [18]. For operations which perform load/store
actions, there is an additional penalty associated that is
directly proportional to the amount of data that is to be
loaded or stored.

While most System-on-Chips (SoCs) that target the
embedded market go without any caches because it makes
predictions about execution time much more difficult, the
STM32 Cortex-M4 does have one instruction cache. This
cache is referred to by STM as the adaptive real-time
memory accelerator (ART). It caches access to the internal
flash ROM memory which is unable to keep up with the
core clock when the microcontroller unit (MCU) runs at
high speeds. For example, at 3.3V the internal STM32F4
flash ROM can only provide zero wait state operation up
to 30 MHz, but can require as many as 7 wait states at
the low-voltage 1.8V operation when the CPU is clocked
faster than 112 MHz [19], [17].

Like almost all architectures within the Cortex-M fam-
ily, the M4 is based on a Harvard memory architecture.
Concretely, this means that data and instructions are
accessed via different buses. For normal operation, the
text segment (i.e. where the executed instructions reside)
is located within the flash ROM of the MCU and data
is stored in the internal SRAM. Instructions are usually
fetched via access to the instruction bus (I-Bus), but may
also be fetched on the system bus (S-Bus), albeit less
efficiently. Data access is performed on the data bus (D-
Bus) or also via the S-Bus. The I-Bus and D-Bus can
access only the lower 512 MiB of the 32 bit address

space while the S-Bus can access almost all the remaining
3584 MiB [17], [18].

III. CYCLE-ACCURATE TIMING SIMULATION

We now focus on a concrete microcontroller and briefly
describe the effects that make naive prediction of exe-
cution time difficult. We continue by showing how our
emulator model is constituted and how it integrates into
semi-automatic verification of code.

A. Execution Time Prediction

The standard attacker model for embedded systems
places the system itself under full physical access of the
attacker. This means an attacker is able to control the
environment in which the microcontroller executes code.
Part of the environment is a reference clock which is
usually supplied externally in form of a quartz crystal.
An attacker who has physical access to such a system can
therefore modify the hardware itself (e.g., by changing
this clock crystal) in order to force the system to slow
down. This allows maximally precise, cycle accurate mea-
surement with even mid-range commercial off-the-shelf
hobbyist equipment. Any single clock cycle difference in
timing can lead to an exploitable security vulnerability of
such a system.

Consider the source code which is presented in List-
ing 1. It shows a memcmp function which differs from
the standard memcmp in the way that no lazy abort is
performed as soon as the first inequality is encountered
between characters of the two supplied input buffers.
While the overall result still is computed in a lazy fashion,
the function always walks over the complete buffer in
every case in an attempt to achieve constant execution
time. This is something that a programmer who is aware
of potential timing side channel leakage might do.

If you take a look at Listing 2 you will see how
the GNU C compiler gcc 5.2.0 translated this code into
ARM Thumb-2 assembly. You can see that the loop
indeed covers all len bytes. However you might also
notice that the compare-branch-if-not-zero instruction at
0x9b4 conditionally skips the following subs instruction
if result != 0. This is the translated equivalent of the
if condition. The code has therefore less work to do once
result != 0 and you might assume that it therefore
executes a tiny bit faster whenever the subs is skipped.

To show the real-world effect of this code, we ran it on a
STM32F407 microcontroller with variable input data. We
then used the embedded trace macro cell (ETM) which we
configured to monitor the executed cycle count using the
CPU-internal data watch point trigger (DWT). The code
to do this is shown in List. 3. Our results were checked
for plausibility by connecting a Rigol DS2202 oscilloscope
to the microcontroller. The code surrounding the profiling
target generated a rising edge on a GPIO pin upon entry
of the function and a falling edge on the return. We then
triggered on the rising edge, but watched the falling edge
of the signal with the infinite persistence function enabled.
The different run times of the function can then clearly be
seen on the oscilloscope.

When running the code from internal flash ROM, with
a core clock of 8 MHz, the run time of a comparison
in which the first characters differed was 196 cycles. For
each byte at the head of the buffers which were equal,
the routine became faster one clock cycle. Similar effects
could be observed with code running from internal RAM:
A comparison which differed at the first character took
279 clock cycles, but the routine also became faster for
each correct heading character by four clock cycles.

Two aspects of this might seem odd and surprising: One
is that the routine, no matter from where it is executed,
becomes faster with an increasing count of equal heading
characters. From the high level perspective, more work
has to be done for each equal heading byte, so you
might assume the routine to become slower for each
match. Intriguingly, the opposite is the case. It also seems
counterintuitive that the routine would run much faster
from internal flash memory than when it runs from internal
SRAM, since SRAM is typically much faster in terms of
access times compared to flash ROM.

When taking a closer look at the architecture, how-
ever, both effects can be explained: That the routine
becomes faster with each matching character stems from
the fact that the compare-branch-if-not-zero instruction
cbnz needs to skip the following subs by performing
the conditional branch. The performance penalty which
incurs with this taken branch is caused by the required
instruction pipeline flush.

That flash ROM is actually faster than SRAM is also
explainable: When instructions are loaded from internal
flash ROM, the I-Bus is connected to the flash peripheral
and the data access to RAM is performed via the S-Bus.
As soon as both instructions and data come from RAM,
however, the S-Bus has to be used for both: it is the only
remaining bus that can access SRAM. This explains why
performance decreases once instructions are served from
SRAM. Bus contention and arbitration is leading to this
degradation in performance.

Another effect that we would like to illustrate is the
effect of wait states when retrieving data from flash ROM.
Consider the code given in List. 4.

This code first XORs the first 10000 bytes of SRAM to
get a steady baseline and then XORs n bytes of flash ROM
on top of it. We executed that function and for each run
determined the clock cycle differential in run time between
the invocation with a byte count n and the subsequent
invocation with byte count n + 1. Intuitively speaking,
this is for every n the amount of clock cycles that the
run additionally takes compared to the previous run. To
not confuse issues, we ran our tests both with instruction
and data caches enabled and later on again with all caches
disabled. On actual hardware the timings we measured are
shown in the plot in Fig. 2.

What can be seen easily is that the cache does have
an effect on the total number of clock cycles, but it does
not have an effect on the clock cycle differential. With all
caches enabled, each new byte takes 10 more clock cycles
except for the crossing of a 16-bytes boundary where this

int memcmp_cet(const uint8_t *a, const uint8_t *b, int len) {
int result = 0;
for (int i = 0; i < len; i++) {

int char_result = a[i] - b[i];
if (result == 0) result = char_result;

}
return result;

}

Listing 1. High-level memcmp routine which tries to achieve constant execution time

memcmp_cet:
80009a4: 2300 movs r3, #0 ; r3 = 0 (i)
80009a6: b570 push {r4, r5, r6, lr}
80009a8: 4604 mov r4, r0 ; r4 = r0 = a
80009aa: 4618 mov r0, r3 ; r0 = r3 = 0 (return value)
80009ac: 4293 cmp r3, r2 ; if (i < len)
80009ae: da05 bge.n 80009bc <memcmp_cet+0x18>
80009b0: 5ce6 ldrb r6, [r4, r3] ; r6 = r4[r3] (a[i])
80009b2: 5ccd ldrb r5, [r1, r3] ; r5 = r1[r3] (b[i])
80009b4: b900 cbnz r0, 80009b8 <memcmp_cet+0x14> ; if (r0 != 0) goto
80009b6: 1b70 subs r0, r6, r5 ; r0 = r6 - r5 (return value)
80009b8: 3301 adds r3, #1 ; r3 += 1 (i++)
80009ba: e7f7 b.n 80009ac <memcmp_cet+0x8>
80009bc: bd70 pop {r4, r5, r6, pc}

Listing 2. Compiled memcmp routine in Thumb-2 assembly

ITM->LAR = 0xC5ACCE55; // Instruction Trace Macrocell, unlock register access
COREDBG->DEMCR |= TRCENA; // Debug Exception and Monitor Control, enable trace cell
DWT->CYCCNT = 0; // Reset counter
DWT->CTRL |= CYCCNTENA; // Set trace cell mode to cycle counting

Listing 3. Activation of cycle counting on the STM32F4

#define FLASH_ROM ((volatile const uint8_t*)0x08000000)
#define RAM ((volatile const uint8_t*)0x20000000)

int waitstate_test(int len) {
uint8_t result = 0;
for (int i = 0; i < 10000; i++) result ˆ= RAM[i];
for (int i = 0; i < len; i++) result ˆ= FLASH_ROM[i];
return result;

}

Listing 4. Code to demonstrate wait state influence

additional byte takes 15 clock cycles. For the case in which
caches have been disabled, the same effect can be observed
with the exception that the differential is usually 21 clock
cycles and jumps to 26 clock cycles when crossing a 16-
bytes boundary. The difference (5 clock cycles) is a direct
consequence of the system’s flash ROM wait states.

B. Architectural Modeling
In order to try to accurately predict timing, we devel-

oped a behavioral ARM core emulator. At the beginning
we briefly looked into the option of modifying already
existing emulation code (such as QEmu), but it soon
became clear to us that most already existing code was

written predominantly with performance in mind. Such
code would likely have been difficult to turn into some-
thing that was usable for cycle-accurate simulation and we
therefore developed our own emulator from the ground up
in the C programming language.

In order to systematically determine execution time of
code on hardware, we wrote platform evaluation code that
allowed us to dynamically download code into the MCU’s
SRAM and have it execute with enabled ETM/DWT
instrumentation. The result was a semi-automatic process
in which the instructions which were of the greatest
interest to us were evaluated in terms of their run time

 5

 10

 15

 20

 25

 30

 8 16 24 32

C
lo

ck
 c

yc
le

 d
if

fe
re

nt
ia

l

Amount of bytes (n)

Cache enabled
Cache disabled

Figure 2. Pipelined instruction execution

performance. We omitted modeling of instructions which
are not relevant for cryptographic purposes in general and
for our use case in particular. Those were, among others,
all floating-point unit (FPU) instructions the MCU offers.
The run time information was collected by a host PC
which was attached to our evaluation platform via RS232.

In our semi-automatic modeling process, the act of
combining already evaluated instructions to form more
complex code fragments was taken care of by a Python
program. For all instructions which were not modeled, ini-
tially an execution time of zero was assumed – something
that is deliberately wrong. We then randomly generated
valid code snippets using a Python program which emitted
increasingly complex sequences of instructions. These
randomly generated code fragments were executed within
the emulator and compared against the results returned
by the actual hardware over the RS232 connection. In
the first training stage it only emitted single instructions
with no memory access and that could not fail (for
example, division instructions weren’t used in this stage
since they can produce arithmetic errors when the dividend
is zero). In a later stage, memory-transfer operations were
added; even more complex were the snippets of code in
which conditional branch instructions were probed. For
the last group we had to give our code generator a coarse
framework in which the branching instructions were to
be embedded in order to avoid infinite looping or other
undesired, undefined behavior.

Every produced code snipped was automatically gen-
erated, compiled and run locally by our emulator. As de-
scribed, it was simultaneously downloaded on a STM32F4
and its execution was profiled on the real hardware. When-
ever a discrepancy between the simulation and hardware
arose, the code generator stripped the examples down to a
minimal code fragment that still exhibited the issue. This
allowed the developer in charge of modeling the device
behavior to be able to exactly pinpoint erroneous instruc-
tion emulation and update the model accordingly. By this
process we were able to achieve convergence towards an
accurate model which simulated common cryptographic
code (i.e. made heavy use of bit wise Boolean arithmetic
such as AES or the SHA family) within just a few days.

The whole emulator is around 12000 lines of code

Simulation core

Raw binary

ELF binary Decode

Dispatch

Emulate

Pipeline

Bus utilization

Cond. exec unit

Wait states

Figure 3. Model of our Thumb-2 emulator

(LOC). The greatest part of this, however, is taken up
by instruction decoding (around 6000 LOC), while sim-
ulation core is around 1800 LOC long. Of the 233 non-
FPU opcode variants, we emulate 114, i.e. around 49%.
The instruction decoding code is generated using a self-
written Python code generator from an XML architecture
description. This description in turn was transcribed by us
from the ARMv7-M Architecture Reference Manual [20].

A simplified model of the emulator architecture we
developed is shown in Fig. 3. The code under test is
compiled into an ELF binary first and the relevant data is
extracted afterwards using standard tools into a binary that
could be written into the flash ROM of a microcontroller.
This binary file is then fed to the simulation core together
with some metadata information. Such metadata could
be a particular entry point or register configuration in
order to suspend and later resume emulated execution.
When a single instruction simulation step occurs, decoding
and dispatching is performed by the simulation core to
the particular unit responsible for that opcode variant.
Since the decoding stub knows about particular data types
and their respective encoding (e.g. immediate Thumb
expansion or sign extension as explained in the ARMv7-
M Reference Manual [20]) the handler functions can work
on the already decoded data and do not need to care about
specifics of their argument encoding.

That way, a particular decoded instruction is emulated
while relying on a behavioral model of the architecture in
the background. A global state is held which takes into
account the aspects of the system previously described
in Sect. III, such as memory wait states, bus utilization,
pipeline fill and the state of the conditional execution unit
of the CPU. All this impacts the actual run time of the
operation within the execution and – depending on the
performed operation – possibly updates the internal state
again to reflect the changed state.

IV. EVALUATION

In order to build up confidence in the accuracy of
our emulator, we checked constantly during development
that the model mimicked its physical counterpart closely.
The way in which we used training code was explained
previously in Sect. III-B. In this section we highlight
the tests we conducted against sophisticated, real-world
software in order to find out how closely our emulator is
able to predict run time in these non-artificial pieces of
software.

A. Experimental Setup

For our tests, we first created a monolithic ELF binary
which contained all algorithms we wanted to test; these
included public-domain variants of the AES and Camel-
lia block ciphers as well as a public domain SHA256
implementation. We also evaluated the official Keccak-
compact reference code in its version 3.2. Above those,
some minor examples (memcpy and sprintf) were also
added which used the embedded C library (newlib in our
case). For all test code, small test stubs were written
which invoked the respective functions. For example,
the SHA256 testing function does the initialization of
a SHA256 context, updates the context with argument-
defined data length (we used the internal ROM as a data
source in this case and just varied the length) and finalizes
the context afterwards.

The main program then waits for commands on the
RS232 interface, which was hooked up to a host PC. One
offered command was to store received data into a program
buffer, which was located in SRAM. Another command
then invoked code execution of this program buffer and
timed its execution time using the hardware-provided
facilities described in Sect. III, particularly List. 3. This
allowed us maximal flexibility because were able to
execute arbitrary code and therefore have custom setup
and tear down trampolines without having to re-flash the
microcontroller every time. Instead, we compiled some
code which called the functions we wanted to test on
the host machine. For this process, we wrote another
Python program which scanned to ELF binary for relevant
entry symbols using nm, emitted Thumb-2 assembly code,
compiled this code and sent it to the microcontroller’s
program buffer via RS232.

The whole process is illustrated in Fig. 4: At first, the
monolithic ELF binary is compiled and flashed onto the
microcontroller. From the ELF, we extract the address of a
particular testing function which we would like to call us-
ing nm; in the shown case, this is the test_sha function
at address 0x1234. The trampoline stub is then generated
which initializes the first parameter to 0x80 (i.e. hash 128
bytes using SHA256). Afterwards the register r4 is set to
0x1235 (the least significant bit is always set, indicating
to the processor that it is to use Thumb mode). Finally, a
register indirect call is performed which jumps into flash
ROM. This code is compiled on the host and its binary
stream sent to STM32’s SRAM program buffer. Execution
of this program buffer now times the function (which is
located in flash ROM) with the previously determined
arguments.

By using empty testing functions stubs which merely
returned, we could determine the amount of time spent in
setup and tear down of our trampoline function in order
to later subtract that amount of clock cycles from the
measurements. This gave us the number of clock cycles
which depended solely on the test function. All code
snippets by default ran 512 times on the actual hardware.
Our testing program ensured that all timing results were in
agreement in order to avoid accidental mismeasurements.

B. Test Results

To verify the correct operation of our emulator, we
performed tests using a variety of functions, many of
which were of cryptographic nature. Among those were
encrypting single blocks using the block ciphers AES128
and Camellia and hashing using the SHA256 and Keccak
hash functions. Some other tests did non-cryptographic
work; one example performs a call to memcmp and yet
another issues a sprintf call which prints a format
string of 24 bytes containing two integer substitutions (%d
and %u).

The result of these tests is shown in Tab. II. Dynamic
instruction count (i.e. the real number of instructions
executed at run time) is shown as well as the amount
of clock cycles on the real hardware and the predicted
amount of clock cycles of the emulator. The host, an
Intel Core i7-5930K, took a worst case of about 300
clock cycles to emulate one target clock cycle. There are,
however, significant differences in speed depending on
the type of code that is simulated. This can be explained
mainly by code making use of the barrel shifter, something
that’s common in cryptographic computations and costly
to emulate in software.

The amount of taken native clock cycles was estimated
correctly by the emulator for most cryptographic algo-
rithms; this is unsurprising as accurate modeling of cryp-
tographic code was our primary objective and hence we
put the most emphasis on that problem. Instructions which
are seldom used in cryptographic code are not modeled
with complete accuracy; in particular the divisions needed
for the Keccak-call (sdiv opcodes) caused some slight
discrepancies and similar issues arise at the sprintf
example.

An estimate of how different the constitution of cryp-
tographic and non-cryptographic code can be is given in
Tab. III. In the AES128, SHA256 and sprintf examples
we mentioned above we counted 108 unique opcodes that
were executed. This includes different conditional variants
of the same opcode after the occurrence of the Thumb-
2 it “if-then” opcode as well as opcodes in their wide
and narrow form. In order to do meaningful analysis with
them, we grouped some of them into different categories
as shown in Tab. I. It is immediately obvious that the
sprintf example differs significantly and uses instruc-
tions and code which isn’t required for cryptographic
computations.

C. Semi-automatic vetting

In order to embed the emulator into a vetting process,
we wrote a fuzzer using Python. A necessary prerequi-
site for functions which shall be tested is that they are
runnable without any previous initialization right after a
call to main(). If this isn’t possible, the developer can
additionally define initialization functions which will be
called before executing the actual tests.

As can be seen in List. 5 the implementation of a
fuzzing directive is done by implementing a method in
a class. The test case generates two random byte arrays

STM32F4

ELF Binary

0x1234 test_sha(int len)
 sha_init()
 sha_update((void*)0x8000000, len)
 sha_finalize()
0x3456 test_camellia(int keybits)
 cam_key_schedule(keybits)
 cam_encrypt()
0x5678 execute()
 t0 = DWT->CYCCNT
 program_buffer()
 t1 = DWT->CYCCNT
 print(t1 - t0)

Testrunner

push {r0, r4, lr}
movw r0, #0x80
movt r0, #0x0
movw r4, #(0x1234 + 1)
movt r4, #0x0
blx r4
pop {r0, r4, pc}

bl11b540f28000c0f20000
41f23524c0f20004a04711bd

bl11b540f28000c0f20000
41f23524c0f20004a04711bd

compile

nm

RS232 download
program_buffer:

Figure 4. Work flow in the experimental setup

Group name Description Examples
addsub Arithmetic addition and subtraction variants add, adc, sub, sbc, rsb
bcc Branch on condition code any conditional branches as well as compare-then-branch instructions

like the “compare branch if nonzero” instruction cbnz
bitwise Bitwise operations and, bic, eor, orr, neg
ldr Family of load operations ldr, ldrb, ldrd, ldrsh, pop, ldmia
mov Family of move operations mov, movt, movs, movw
shift Bitwise shifting instructions lsl, lsr
str Family of load operations str, strb, strd, push, stmia

Table I
USED INSTRUCTION GROUPING

Operation Instructions Native CCs Predicted CCs CC Diff. Emulator CCs CC ratio
memcmp 32 bytes 295 413 413 0 75 k 182
memcmp 100 bytes 907 1254 1254 0 227 k 181
16 bytes AES128 encrypt 8479 11634 11634 0 3.00 M 258
16 bytes Camellia-128 encrypt 1647 4469 4469 0 699 k 156
16 bytes Camellia-192 encrypt 2239 5962 5962 0 944 k 158
16 bytes Camellia-256 encrypt 2197 5892 5892 0 933 k 158
16 bytes hashing SHA-256 4091 5198 5198 0 1.53 M 294
32 bytes hashing SHA-256 4155 5299 5299 0 1.56 M 294
50 bytes hashing SHA-256 5227 5417 5417 0 1.59 M 294
32 bytes hashing Keccak-512 25866 40330 40326 4 8.19 M 203
64 bytes hashing Keccak-512 25938 40438 40430 8 8.22 M 203
256 bytes hashing Keccak-512 26370 41107 41075 32 8.37 M 204
sprintf 1088 2027 2010 17 367 k 181

Table II
MEASUREMENTS SHOWING THE DYNAMIC INSTRUCTION COUNT AND TAKEN CLOCK CYCLES (CCS)

Operation/Group AES-128 (16) SHA-256 (32) sprintf
addsub 1290 15.2% 999 24.1% 160 14.8%
b 144 1.7% 87 2.1% 28 2.6%
bcc 515 6.1% 227 5.5% 158 14.6%
bitwise 2116 25.0% 944 22.7% 15 1.4%
clz 1 0.1%
cmp 512 6.0% 218 5.2% 154 14.2%
it 298 3.5% 49 4.5%
ldr 1671 19.7% 579 13.9% 196 18.1%
mov 498 5.9% 833 20.1% 140 12.9%
shift 160 1.9% 43 1.0% 18 1.7%
str 535 6.3% 223 5.4% 152 14.0%
tbh 2 0.2%
tst 298 3.5% 1 0.1%
umull 8 0.7%
uxtb 442 5.2%

Table III
DETAILED DYNAMIC INSTRUCTION BREAKDOWN OF TESTS WITH ASSEMBLY INSTRUCTION GROUPING

of 16 bytes each. A call to the assert_crt then
actually triggers the verification. In this instance, memcmp
is asserted to have constant run time independent of the
content of the random byte arrays.

def tc_memcmp(self):
array1 = self.randbytes(16)
array2 = self.randbytes(16)
self.assert_crt("memcmp",

array1.addr, array2.addr, 16)

Listing 5. Python fuzzer test case

To come to a conclusion whether the assertion is true or
false, the framework first takes the compiled ELF binary
and simulates the code until main() is called. A snapshot
of the memory and the CPU state is then generated as an
optimization in order to be able to quickly switch back to
this state later on for subsequent trials. The random byte
arrays are generated at this point in time and mapped to a
memory region which is otherwise unused by the hardware
as to not interfere with the normal run time behavior.
Then, memcmp is called with the appropriate memory
addresses. The cycle count of the run time is recorded
and the previous memory snapshot is restored. When the
procedure is run again, it is verified that the second cycle
count is equal to the first one. An arbitrary number of runs
can be specified to get a reasonable amount of confidence
that the probed function actually exhibits constant run time
behavior. For the above example, a set of 1200 runs will
ensure with a probability of at least 99% that the first byte
in both random arrays was identical at least once. It would
be equally possible to hard-code this, however, in Python,
but we chose to keep the fuzzing example as simple as
possible to illustrate our main point.

Integration of this Python fuzzer into the build process
is trivial; in our case we simply added a .PHONY target
called check into the Makefile which initiated the
vetting procedure. If this target is defined as a dependency
of, for example, the programming target, it can easily be
assured that programming the microcontroller only then
proceeds once the internal checks have passed (since the
build process would abort otherwise).

If a discrepancy in the tested code arises, the user has
the ability to re-run the emulator with tracing enabled. This
gives a detailed breakdown at every executed instruction
of where the cycle and program counter is at and allows
to easily spot the sections which lead to unequal run time
timing behavior.

V. CONCLUSION AND OUTLOOK

We have described theoretically and shown in practice
that modern microcontrollers, such as those of the ARM
Cortex-M family, exhibit timing phenomena which closely
resemble behavior previously only seen on sophisticated
desktop CPUs. In our explanations, it becomes clear
how difficult it is to predict these effects to the naked
eye. While the reasons for which these mechanisms have
been incorporated into modern MCUs are beneficial for
performance, they can lead to the presence of timing side

channels. We explained how easy it is to exploit these tiny
timing discrepancies by using mid-range commercial-off-
the-shelf equipment. The described attacks are realistic for
attackers with minimal hardware knowledge and physical
access to the device.

To strengthen the defensive side, we have developed an
emulator with the primary objective of emulating code
with clock cycle accuracy. We have demonstrated the
effectiveness of our approach and also describe how a
streamlined process to improve the simulation model can
look like. With the help of this emulator, it is possible for
a software developer to regularly and semi-automatically
probe code after each compilation in order to achieve
continuous quality monitoring during the development
process. It only has to be defined what results are expected
from the function under test in order for the fuzzer to
be able to do its work properly. If, for example by an
upgrade of the compiler, the timing behavior changes in
critical manners, this can be detected at a early stage
within the development life cycle; timing analysis can
then selectively performed on real hardware to confirm
and pinpoint such irregularities.

Modern microcontrollers today are much more ad-
vanced than MCUs of previous generations. While this
is a blessing on one hand, these quasi-magic performance
boosters are a curse at the same time, since they are a
major contributing factor to the presence of timing side
channels. It is our hope that by accurately describing the
effects present in these systems as well as releasing the
complete source code of our project, our work contributes
to both raising awareness and strengthening of mitigation
strategies of timing side channels on embedded systems.

REFERENCES

[1] B. W. Lampson, “A note on the confinement
problem,” Communications of the ACM, vol. 16,
no. 10, pp. 613–615, 1973. [Online]. Available:
http://dl.acm.org/citation.cfm?id=362389

[2] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Advances in
Cryptology—CRYPTO’96. Springer, 1996, pp. 104–113.

[3] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J.
Quisquater, and J.-L. Willems, “A practical implementation
of the timing attack,” 1998.

[4] ——, “A practical implementation of the timing attack,” in
Smart Card Research and Applications. Springer, 2000,
pp. 167–182.

[5] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side
channel cryptanalysis of product ciphers,” in Computer
Security—ESORICS ’98. Springer, 1998, pp. 97–110.

[6] D. Page, “Theoretical use of cache memory as a cryptan-
alytic side-channel,” IACR Cryptology ePrint Archive, vol.
2002, p. 169, 2002.

[7] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and
H. Miyauchi, “Cryptanalysis of DES implemented on
computers with cache,” in Cryptographic Hardware and
Embedded Systems—CHES 2003. Springer, 2003, pp. 62–
76.

[8] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[9] T. Goodspeed, “A side-channel timing attack of the
MSP430 BSL,” Black Hat USA, 2008.

[10] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: the case of AES,” in Topics in
Cryptology—CT-RSA 2006. Springer, 2006, pp. 1–20.

[11] Z. Wang and R. B. Lee, New cache designs for thwarting
software cache-based side channel attacks, ACM, 2007.

[12] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Decon-
structing new cache designs for thwarting software cache-
based side channel attacks,” in Proceedings of the 2nd
ACM workshop on Computer security architectures. ACM,
2008, pp. 25–34.

[13] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64
microarchitectural simulator,” in Performance Analysis of
Systems Software, 2007. ISPASS 2007. IEEE International
Symposium on, April 2007, pp. 23–34.

[14] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” IEEE Com-
puter Architecture Letters, vol. 10, no. 1, pp. 16–19, Jan
2011.

[15] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“The design and use of simplepower: A cycle-accurate
energy estimation tool,” in Proceedings of the 37th Annual
Design Automation Conference, ser. DAC ’00. New York,
NY, USA: ACM, 2000, pp. 340–345. [Online]. Available:
https://doi.org/10.1145/337292.337436

[16] M. Reshadi and N. Dutt, “Generic pipelined processor
modeling and high performance cycle-accurate simulator
generation,” in Proceedings of the Conference on
Design, Automation and Test in Europe—Volume
2, ser. DATE ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 786–791. [Online]. Available:
http://dx.doi.org/10.1109/DATE.2005.166

[17] ST Microelectronics, RM0090 Reference manual
STM32F405xx, STM32F407xx, STM32F415xx and
STM32F417xx advanced ARM-based 32-bit MCUs,
September 2011.

[18] ARM Ltd., Cortex-M4 Technical Reference Manual Revi-
sion r0 Part p0, March 2010.

[19] ST Microelectronics, PM0081 STM32F40xxx and
STM32F41xxx Flash Programming Manual, September
2011.

[20] ARM Ltd., ARMv7-M Architecture Reference Manual DDI
0403E.b (ID 120114), December 2014.

